Saturday, 15 Dec 2018

Statistika

Kumpulan artikel Statistika deksriptif dan inferensial: Dasar-dasar Statistika (Pengertian Statistika, Populasi dan Sampel, Variabel dan Data, Skala Pengukuran Variabel); Statistik Deskriptif (Pengertian Statistika Deskriptif, Ukuran Pemusatan Data, Ukuran Penyebaran, Contoh Perhitungan Skewness dan Kurtosis, Distribusi Frekuensi); Eksplorasi Data (Analisis data eksploratif, Stemplot, Mengenal Box-Plot); Korelasi dan Regresi; Uji t Student (Uji t-student, Uji-t 2 Populasi dengan Ragam Homogen, Uji t-student 2 populasi dengan Ragam Heterogen, Uji t Berpasangan); dan beberapa uji Non-Parametrik (Uji McNemar, Uji Wilcoxon Untuk Data Berpasangan)

Ukuran Pemusatan Data: Mean - Median - Mode

Salah satu aspek yang paling penting untuk menggambarkan distribusi data adalah nilai pusat data pengamatan (Central Tendency). Setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai sentral dari suatu gugus data (himpunan pengamatan) dikenal sebagai ukuran pemusatan data (tendensi sentral). Terdapat tiga ukuran pemusatan data yang sering digunakan, yaitu:

  • Mean (Rata-rata hitung/rata-rata aritmetika)
  • Median
  • Mode

Pada artikel ini akan di bahas mengenai pengertian beberapa ukuran pemusatan data yang dilengkapi dengan contoh perhitungan, baik untuk data tunggal ataupun data yang sudah dikelompokkan dalam tabel distribusi frekuensi. Selain ukuran statistik di atas, akan dibahas juga mengenai beberapa ukuran statistik lainnya, seperti Rata-rata Ukur (Geometric Mean), Rata-rata Harmonik (H) serta beberapa karakteristik penting yang perlu dipahami untuk ukuran tendensi sentral yang baik serta bagaimana memilih atau menggunakan nilai tendensi sentral yang tepat.

Read more: Ukuran Pemusatan Data: Mean - Median - Mode

Ukuran Penyebaran (Measures of Dispersion)

Ukuran Penyebaran Data Ukuran penyebaran (Measures of Dispersion) atau ukuran keragaman pengamatan dari nilai rata-ratanya disebut simpangan (deviation/dispersi). Terdapat beberapa ukuran untuk menentukan dispersi data pengamatan, seperti jangkauan/rentang (range), simpangan kuartil (quartile deviation), simpangan rata-rata (mean deviation), dan simpangan baku (standard deviation).

Ukuran tendensi sentral (mean, median, mode) merupakan nilai pewakil dari suatu distribusi frekuensi, tetapi ukuran tersebut tidak memberikan gambaran informasi yang lengkap mengenai bagaimana penyebaran data pengamatan terhadap nilai sentralnya. Ukuran tendensi sentral saja tidak cukup untuk menggambarkan distribusi frekuensi. Selain itu kita harus memiliki ukuran persebaran data pengamatan.

Read more: Ukuran Penyebaran (Measures of Dispersion)

Contoh Perhitungan Skewness dan Kurtosis

Rata-rata dan ukuran penyebaran dapat menggambarkan distribusi data tetapi tidak cukup untuk menggambarkan sifat distribusi. Untuk dapat menggambarkan karakteristik dari suatu distribusi data, kita menggunakan konsep-konsep lain yang dikenal sebagai kemiringan (skewness) dan keruncingan (kurtosis).

Read more: Contoh Perhitungan Skewness dan Kurtosis

Distribusi Frekuensi

Distribusi Frekuensi DataDefinisi: Distribusi Frekuensi adalah daftar nilai data (bisa nilai individual atau nilai data yang sudah dikelompokkan ke dalam selang interval tertentu) yang disertai dengan nilai frekuensi yang sesuai.

Hasil pengukuran yang kita peroleh disebut dengan data mentah. Besarnya hasil pengukuran yang kita peroleh biasanya bervariasi. Apabila kita perhatikan data mentah tersebut, sangatlah sulit bagi kita untuk menarik kesimpulan yang berarti. Data mentah tersebut perlu di olah terlebih dahulu sehingga kita bisa memperoleh gambaran yang baik mengenai data tersebut.

Pada bahasan kali ini, smartstat akan menguraikan mengenai pengertian distribusi frekuensi yang disertai dengan contoh dan Teknik Pembuatan Tabel Distribusi Frekuensi. Selain itu, akan dibahas juga mengenai Distribusi Frekuensi Relatif dan Distribusi Frekuensi kumulatif, Histogram, Poligon Frekuensi, dan Ogive.

Read more: Distribusi Frekuensi

Analisis data eksploratif

Analisis data eksploratifAnalisis data eksploratif (Exploratory Data Analysis – EDA) merupakan metode eksplorasi data dengan menggunakan teknik aritmatika sederhana dan teknik grafis dalam meringkas data pengamatan. Eksplorasi data merupakan bagian yang integral dari persepsi kita. Apabila tujuan akhir dari penelitian bukan untuk menghasilkan inferensi kausal, analisis data selanjutnya sudah tidak diperlukan lagi. Namun apabila diperlukan, analisis data eksploratori sangat menunjang dalam menelaah dan menemukan tentang sifat-sifat data yang nantinya dapat berguna dalam menyeleksi model statistik yang tepat. Dengan demikian, pada analisis data eksploratif, sifat dari data pengamatanlah yang akan menentukan model analisis statistik yang sesuai (atau perbaikan dari analisis yang sudah direncanakan).

Langkah pertama dalam menganalisis data adalah mempelajari karakteristik dari data tersebut. Terdapat beberapa alasan penting yang perlu kita pertimbangkan secara cermat sebelum analisis data sebenarnya kita lakukan. Alasan pertama pemeriksaan data adalah untuk memeriksa kesalahan-kesalahan yang mungkin terjadi pada berbagai tahap, mulai dari pencatatan data di lapangan sampai pada entry data pada komputer. Alasan berikutnya adalah untuk tujuan eksplorasi data sehingga kita bisa menentukan model analisis yang tepat.

Read more: Analisis data eksploratif



Please share...!



Komentar Anda?