Sunday, 19 Nov 2017

Statisika Deskriptif

Kumpulan artikel mengenai Pengertian Statistik Deskriptif, Ukuran Pemusatan Data, Ukuran Penyebaran, Contoh Perhitungan Skewness dan Kurtosis, Distribusi Frekuensi

Statistika Deskriptif

Statistik adalah sekumpulan prosedur untuk mengumpulkan, mengukur, mengklasifikasi, menghitung, menjelaskan, mensintesis, menganalisis, dan menafsirkan data kuantitatif yang diperoleh secara sistematis. Secara garis besar, statistik dibagi menjadi dua komponen utama, yaitu Statistik Deskriptif dan Statistik inferensial. Statistik deskriptif menggunakan prosedur numerik dan grafis dalam meringkas gugus data dengan cara yang jelas dan dapat dimengerti, sementara Statistik inferensial menyediakan prosedur untuk menarik kesimpulan tentang populasi berdasarkan sampel yang kita amati. Statistik Deskriptif membantu kita untuk menyederhanakan data dalam jumlah besar dengan cara yang logis. Data yang banyak direduksi dan diringkas sehingga lebih sederhana dan lebih mudah diinterpretasi.

Read more: Statistika Deskriptif

Ukuran Pemusatan Data: Mean - Median - Mode

Salah satu aspek yang paling penting untuk menggambarkan distribusi data adalah nilai pusat data pengamatan (Central Tendency). Setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai sentral dari suatu gugus data (himpunan pengamatan) dikenal sebagai ukuran pemusatan data (tendensi sentral). Terdapat tiga ukuran pemusatan data yang sering digunakan, yaitu:

  • Mean (Rata-rata hitung/rata-rata aritmetika)
  • Median
  • Mode

Pada artikel ini akan di bahas mengenai pengertian beberapa ukuran pemusatan data yang dilengkapi dengan contoh perhitungan, baik untuk data tunggal ataupun data yang sudah dikelompokkan dalam tabel distribusi frekuensi. Selain ukuran statistik di atas, akan dibahas juga mengenai beberapa ukuran statistik lainnya, seperti Rata-rata Ukur (Geometric Mean), Rata-rata Harmonik (H) serta beberapa karakteristik penting yang perlu dipahami untuk ukuran tendensi sentral yang baik serta bagaimana memilih atau menggunakan nilai tendensi sentral yang tepat.

Read more: Ukuran Pemusatan Data: Mean - Median - Mode

Ukuran Penyebaran (Measures of Dispersion)

Ukuran Penyebaran Data Ukuran penyebaran (Measures of Dispersion) atau ukuran keragaman pengamatan dari nilai rata-ratanya disebut simpangan (deviation/dispersi). Terdapat beberapa ukuran untuk menentukan dispersi data pengamatan, seperti jangkauan/rentang (range), simpangan kuartil (quartile deviation), simpangan rata-rata (mean deviation), dan simpangan baku (standard deviation).

Ukuran tendensi sentral (mean, median, mode) merupakan nilai pewakil dari suatu distribusi frekuensi, tetapi ukuran tersebut tidak memberikan gambaran informasi yang lengkap mengenai bagaimana penyebaran data pengamatan terhadap nilai sentralnya. Ukuran tendensi sentral saja tidak cukup untuk menggambarkan distribusi frekuensi. Selain itu kita harus memiliki ukuran persebaran data pengamatan.

Read more: Ukuran Penyebaran (Measures of Dispersion)

Contoh Perhitungan Skewness dan Kurtosis

Rata-rata dan ukuran penyebaran dapat menggambarkan distribusi data tetapi tidak cukup untuk menggambarkan sifat distribusi. Untuk dapat menggambarkan karakteristik dari suatu distribusi data, kita menggunakan konsep-konsep lain yang dikenal sebagai kemiringan (skewness) dan keruncingan (kurtosis).

Read more: Contoh Perhitungan Skewness dan Kurtosis

Distribusi Frekuensi

Distribusi Frekuensi DataDefinisi: Distribusi Frekuensi adalah daftar nilai data (bisa nilai individual atau nilai data yang sudah dikelompokkan ke dalam selang interval tertentu) yang disertai dengan nilai frekuensi yang sesuai.

Hasil pengukuran yang kita peroleh disebut dengan data mentah. Besarnya hasil pengukuran yang kita peroleh biasanya bervariasi. Apabila kita perhatikan data mentah tersebut, sangatlah sulit bagi kita untuk menarik kesimpulan yang berarti. Data mentah tersebut perlu di olah terlebih dahulu sehingga kita bisa memperoleh gambaran yang baik mengenai data tersebut.

Pada bahasan kali ini, smartstat akan menguraikan mengenai pengertian distribusi frekuensi yang disertai dengan contoh dan Teknik Pembuatan Tabel Distribusi Frekuensi. Selain itu, akan dibahas juga mengenai Distribusi Frekuensi Relatif dan Distribusi Frekuensi kumulatif, Histogram, Poligon Frekuensi, dan Ogive.

Read more: Distribusi Frekuensi


Please share...!



Komentar Anda?