Sidebar Menu

Example of Application of Split Block Design (Strip Plot/Striped Grid)

This sample article on strip-plot (split-block) design analysis is a continuation of the article Strip Plot Design . For example, the data to be analyzed is the same as the example in Split Plot Design , namely the effect of the combination of fertilizer and rice genotype on rice yields, but designed using a strip-plot/split-block design. Combination of NPK fertilizer (vertical factor, A) and rice genotype (horizontal factor, B). The following are the steps for calculating the analysis of variance followed by post hoc: Fisher LSD.

Analyse data using SmartstatXL Add-In: How to Analyze Strip Plot (Split Block) Experiments

Application Example

Suppose, the same data as the example on the split-plot but designed using a split-block design. Combination of NPK Fertilizer (Vertical Factor, A) and Rice Genotype (Horizontal Factor, B).

Table 13. The effect of applying a combination of fertilizers and rice genotypes on rice yields.

   

Block (K)

Fertilizer (A)

Genotype (B)

1

2

3

4

1

1

20.7

32.1

29.5

37.7

 

2

27.7

33.0

26.3

37.7

2

1

30.0

30.7

25.5

36.9

 

2

36.6

33.8

27.0

39.0

3

1

39.9

41.5

46.4

44.5

 

2

37.4

41.2

45.4

44.6

4

1

40.8

43.5

43.3

43.4

 

2

42.2

46.0

45.9

46.2

5

1

42.4

45.6

44.8

47.0

 

2

39.8

39.5

40.9

44.0

6

1

48.6

49.8

42.6

46.6

 

2

42.9

45.9

43.9

45.6

Calculation by Hand:

Step 1: Calculate the Correction Factor

$$ CF=\frac{Y...^2}{abr}=\frac{(1906.3)^2}{6\times2\times4}=75707.91$$

Step 2: Calculate the Sum of The Total Squares

$$\begin{matrix}SSTOT=\sum_{i,j,k}{Y_{ijk}}^2-CF\\=(20.7)^2+(32.1)^2+...+(45.6)^2-75707.91\\=2273.94\\\end{matrix}$$

Create Vertical Direction Table (Factor A x Block)

Fertilizer (A)

Block (K)

Total Fertilizer

1

2

3

4

(Σai)

1

48.4

65.1

55.8

75.4

244.7

2

66.6

64.5

52.5

75.9

259.5

3

77.3

82.7

91.8

89.1

340.9

4

83.0

89.5

89.2

89.6

351.3

5

82.2

85.1

85.7

91.0

344.0

6

91.5

95.7

86.5

92.2

365.9

Total Block (Σrk)

449.0

482.6

461.5

513.2

1906.3

Step 3: Calculate the Sum of Squares of Blocks

$$\begin{matrix}SSR=\frac{\sum_{k}{(r_k)^2}}{ab}-CF\\=\frac{(449)^2+(482.6)^2+(461.5)^2+(513.2)^2}{6\times2}-75707.91\\=197.11\\\end{matrix}$$

Step 4: Calculate the Sum of Squares of Factor A

$$\begin{matrix}SS(A)=\frac{\sum_{i}{(a_i)^2}}{rb}-CF\\=\frac{(244.7)^2+(259.5)^2+...+(365.9)^2}{4\times2}-75707.91\\=1674.80\\\end{matrix}$$

Step 5: Calculate the Sum of Squares of Main Plot Errors (Ea)

$$\begin{matrix}SS(Ea)=\frac{\sum_{i,k}{(a_ir_k)^2}}{b}-CF-SSR-SS(A)\\=\frac{(48.4)^2+(65.1)^2+...+(86.5)^2+(92.2)^2}{2}-75707.91-197.11-1674.80\\=267.73\\\end{matrix}$$

Create a Horizontal Direction Table (Factor B x Block):

Genotype (B)

Block (K)

Total Fertilizer

1

2

3

4

(Σbj)

1

222.4

243.2

232.1

256.1

953.8

2

226.6

239.4

229.4

257.1

952.5

Total Block (Σrk)

449.0

482.6

461.5

513.2

1906.3

Step 6: Calculate the Sum of The Squares of Factor B

$$\begin{matrix}SS(B)=\frac{\sum_{j}{(b_j)^2}}{ra}-CF\\=\frac{(953.8)^2+(952.5)^2}{4\times6}-75707.91\\=0.035\\\end{matrix}$$

$$\begin{matrix}SS(Eb)==\frac{\sum_{j,k}{(b_lr_k)^2}}{a}-CF-SSR-SS(B)\\=\frac{(222.4)^2+(243.2)^2+...+(229.4)^2+(257.1)^2}{6}-75707.91-197.11-0.035\\=3.33\\\end{matrix}$$

Create A Table For Total Treatment:

Fertilizer (A)

Genotype (B)

Total A

1

2

(Σai)

1

120.0

124.7

244.7

2

123.1

136.4

259.5

3

172.3

168.6

340.9

4

171.0

180.3

351.3

5

179.8

164.2

344.0

6

187.6

178.3

365.9

Total B (Σbj)

953.8

952.5

1906.3

Step 7: Calculate the Sum of Squares of AB Interactions

$$\begin{matrix}SS(AB)=\frac{\sum_{i,j}{(a_ib_j)^2}}{r}-CF-SS(A)-SS(B)\\=\frac{(120.0)^2+(124.7)^2+...+(187.6)^2+(178.3)^2}{4}-75707.91-1674.80-0.035\\=78.59\\\end{matrix}$$

Step 8: Calculate the Sum of Squares of Error C (SSEc)

$$\begin{matrix}SSEc=SSTOT\ -\ SS(Other)\ \\=SSTOT\ -\ SSB\ -\ SS(A)\ -\ SSEa-SS(B)-SSEb-SS(AB)\\=2273.94-197.114-1674.80-267.73-0.035-3.33-78.59\\=52.35\\\end{matrix}$$

Step 9: Create an Analysis of variance Table with its F-Values

Table 14. Anova Table of Rice Yield

Sources of Variance

DB

SS

MS

F-stat

F .05

           

Block (K)

3

197.110625

65.7035417

   

Vertical Direction

         

Fertilizer (A)

5

1674.79604

334.959208

18.77 **

2.901

Error(a)

15

267.728125

17.8485417

-

 

Horizontal Direction

         

Genotype (B)

1

0.03520833

0.03520833

0.03 ns

10. 128th

Error (b)

3

3.328958

1.109652778

   

Interaction

         

AxB

5

78.5910417

15.7182083

4.50 *

2.901

Error(c)

15

52.349792

3.489986111

-

 

Total

47

2273.93979

     

$$\begin{matrix}CV(a)=\frac{\sqrt{MS(Ea)}}{\bar{Y}...}=\frac{\sqrt{17.849}}{39.715}\\=10.64\%\\\end{matrix}$$

$$\begin{matrix}CV(b)=\frac{\sqrt{MS(Eb)}}{\bar{Y}...}=\frac{\sqrt{1.110}}{39.715}\\=2.65\%\\\end{matrix}$$

$$\begin{matrix}CV(c)=\frac{\sqrt{MS(Ec)}}{\bar{Y}...}=\frac{\sqrt{3.490}}{39.715}\\=4.70\%\\\end{matrix}$$

Step 10: Make a Conclusion

First, we check whether the Interaction Effect is significant or not? If it is significant, then examine the simple effect of the interaction, and ignore the main effect, even if the main effect is significant! Why? Take another look at the discussion about the effect of interactions and main effects! Main effect testing (if significant) is only performed when the effect of the interaction is not significant.

Effect of AB Interactions

Because Fstat (4.50) > 2. 901 then we reject H0: μ1 = μ2 = ... at a confidence level of 95% (usually given one asterisk mark (*), which indicates a noticeable difference)

Main Effects

Since the effect of the interaction is significant, then its main effect does not need to be discussed further.

Post Hoc

Based on the anova, the effect of the interaction is significant so that the testing of the main effect of the treatment of the combination of fertilizers and the two rice genotypes does not need to be carried out. The next step is to examine its simple effect because the interaction between the two factors is significant.

Here are the steps to test Advanced Test by using LSD:

Test criteria:

Compare the absolute value of the difference between the two averages that we will see the difference with the LSD value with the following test criteria:

$$ if\ \ \left|\mu_i-\mu_j\right|\ \ \left\langle\ \ \begin{matrix}>LSD_{0.05}\ \mathbf{reject}\ H_0,\ two\ means\ are\ significantly\ different\\\le LSD_{0.05}\ \mathbf{accept}\ H_0,\ two\ means\ are\ not\ significantly\ different.\\\end{matrix}\right.$$

Comparison of Vertical Factor Mean, A (between two fertilization combinations on the same genotype):

Calculate the appropriate Comparative Value (LSD)

To compare two averages of Factor A (vertical) (the average pair of fertilization combinations) on the same Factor B (horizontal) treatment, the standard error was calculated using the formula:

$$s_{\bar{Y}}=\sqrt{\frac{2\left[(a-1)MS(Ec)+MS(Eb)\right]}{ra}}$$

From the formula, it can be seen that to compare the two average values of Vertical Factor (A) on the same Horizontal Factor (B) treatment, two types of MS (Error) are used, namely MS (Ea) and MS (Ec). The implication is that the ratio of the difference in treatment to standard error does not follow the distribution of t-students, so it needs to be calculated t combined/weighted. If ta and tc are successively the values of t obtained from the table with a certain significant degree at error-degree of freedom a and error-degree of freedom c, then the weighted value of t is:

$$ t'=\frac{(b-1)(MS\ \ Ec)(t_c)+(MS\ \ Ea)(t_a)}{(b-1)(MS\ \ Ec)+(MS\ \ Ea)}$$

ta = t(0.05/2.15) = 2.131

tc = t(0.05/2.15) = 2.131

b = 2 (Leveling Factor Level, B)

MS(Ea) = 17.8485

MS(Ec) = 3.48999

so that:

$$\begin{matrix}t'=\frac{(b-1)(MS\ \ Ec)(t_c)+(MS\ \ Ea)(t_a)}{(b-1)(MS\ \ Ec)+(MS\ \ Ea)}\\=\frac{(2-1)(3.48999)(2.131+(17.8485)(2.131)}{(2-1)(3.48999)+(17.8485)}\\=2.131\\\end{matrix}$$

and

$$s_{\bar{Y}}=\sqrt{\frac{2\left[(b-1)MS(Ec)+MS(Ea)\right]}{rb}} \\ s_{\bar{Y}}=\sqrt{\frac{2\left[(2-1)3.48999+17.8485\right]}{4\times2}} \\ =2.30968$$

So:

$$\begin{matrix}LSD=t'\times s_Y\\=2.131\times2.3097\\=4.9219\ \ kg\\\end{matrix}$$

Compare the difference in the average treatment with the LSD value = 4.922. State it differently if the average difference is greater than the LSD value.

Comparison between the average fertilization combinations (Factor A) at the level of Genotype IR-64

No Sort

Fertilizer

 

Control

PK

NP

N

NK

NPK

 
   

Average

30.00

30.78

42.75

43.08

44.95

46.90

 

1

Control

30.00

0.00

         

a

2

PK

30.78

0.77

0.00

       

a

4

NP

42.75

12.75

11.98

0.00

     

b

3

N

43.08

13.08

12.30

0.33

0.00

   

b

5

NK

44.95

14.95

14.18

2.20

1.88

0.00

 

b

6

NPK

46.90

16.90

16.13

4.15

3.83

1.95

0.00

b

 

Comparison between the average fertilization combinations (Factor A) at the level of Genotype S-969

No Sort

Fertilizer

 

Control

PK

NK

N

NPK

NP

 
     

31.18

34.10

41.05

42.15

44.58

45.08

 

1

Control

31.18

0.00

         

a

2

PK

34.10

2.93

0.00

       

a

5

NK

41.05

9.88

6.95

0.00

     

b

3

N

42.15

10.98

8.05

1.10

0.00

   

b

6

NPK

44.58

13.40

10.48

3.53

2.43

0.00

 

b

4

NP

45.08

13.90

10.98

4.03

2.93

0.50

0.00

b

 

Comparison of Horizontal factors , B (between two rice genotypes on a specific fertilization combination):

Calculate the appropriate Comparative Value (LSD)

To compare the two averages of Factor B (the average pair of rice genotypes) on the same Factor A treatment, the standard error was calculated using the formula:

$$s_{\bar{Y}}=\sqrt{\frac{2\left[(a-1)MS(Ec)+MS(Eb)\right]}{ra}}$$

From the formula, it can be seen that to compare two average values of horizontal factor (B) on the same vertical factor (A) treatment, two types of MS (Error) are used, namely MS (Eb) and MS (Ec ). The implication is that the ratio of the difference in treatment to standard error does not follow the distribution of t-students so it needs to be calculated t combined/weighted. If tb and tc are successively the values of t obtained from the student table with a certain significant degree at error-degree of freedom a and error-degree of freedom c, then the weighted value of t is:

$$ t'=\frac{(a-1)(MS\ \ Ec)(t_c)+(MS\ \ Eb)(t_b)}{(a-1)(MS\ \ Ec)+(MS\ \ Eb)}$$

tb = t(0.05/2.3) = 2.131 (Actually it is no longer feasible, because the error-degree of freedom is less than 6, which is 3)

tc = t(0.05/2.15) = 2.131

a = 6 (Vertical Factor level, A)

MS(Eb) = 1.10965

MS(Ec) = 3.48999

so that:

$$t'=\frac{(a-1)(MSEc)(t_c)+(MSEa)(t_a)}{(a-1)(MSEc)+(MSEa)}\\=\frac{(6-1)(3.48999)(2.131)+(1.10965)(3.182)}{(6-1)(3.48999)+(1.10965)}\\=2.19384$$

and

$$s_{\bar{Y}}=\sqrt{\frac{2\left[(a-1)MS(Ec)+MS(Eb)\right]}{ra}} \\
s_{\bar{Y}}=\sqrt{\frac{2\left[(6-1)3.48999+1.10965\right]}{4\times6}} \\
=1.24364$$

So:

$$\begin{matrix}LSD=t'\times s_{\bar{Y}}\\=2.19384\times1.24364\\=2.72834\ \ kg\\\end{matrix}$$ 

Compare the difference in the average treatment with the LSD value = 2.728. State it differently if the average difference is greater than the LSD value. The result is as follows:

 

Fertilizer

 

Control

PK

N

NP

NK

NPK

IR-64

30.00 a

30.78 a

43.08 a

42.75 a

44.95 b

46.90 a

S-969

31.18 a

34.10 b

42.15 a

45.08 a

41.05 a

44.58 a.

Difference

1.18

3.33 *

0.93

2.33

3.90 *

2.33

From the results of further tests of the simple effects above, the results can be summarized in the form of a Table of Fertilizer Interactions x Genotypes as below.

Fertilizer (P)

Genotype (G)

1

2

Control

30:00 a
(a)

31.18 a
(a)

PK

30.78 a
(a)

34.10 a
(b)

N

43.08 b
(a)

42.15 b
(a)

NK

42.75 b
(a)

45.08 b
(a)

NP

44.95 b
(b)

41.05 b
(a)

NPK

46.90 b
(a)

44.58 b
(a)

Information:

Letters in brackets are read in a horizontal direction, comparing between 2 G on the same P

Lowercase letters without brackets are read vertically, comparing between 2 P's on the same G

Calculation by SmartstatXL Excel-Add-In

Graphical user interface, application Description automatically generated

Anova:

Graphical user interface, table Description automatically generated

 

Post Hoc:

Graphical user interface Description automatically generated with low confidence

Interaction (Simple Effect):

Graphical user interface, chart Description automatically generated with medium confidence

Anova Assumption:

Table Description automatically generated

 

Chart, scatter chart Description automatically generated