Sidebar Menu

Example of Split Split Plot Design

This article is a continuation of the Split-Split Plot Design article. For example, there is an experiment in agriculture that wants to study the effect of Nitrogen fertilization (A), Plant Management (B) and Variety (C) on rice production (tons/ha). Nitrogen factor was placed as the main plot, Management as a sub-plot and Varieties as a sub-plot. The following are the steps for calculating the analysis of variance followed by post hoc test: Fisher's LSD.

You can read the full discussion about the Application of the Split-Plot Design in the following document and the tutorial of analyse data using SmartstatXL Add-In and SPSS software can be learned at the link:


Application Example

Experiments in agriculture want to study the effect of three factors, namely, Nitrogen fertilization (A), Management on crops (B) and Variety Type (C) on rice production yields (tons / ha).  Nitrogen factor is placed as the main plot, Management as a sub plot and varieties as sub-sub plots. 

Table 9      Rice Production Data (tons/ha)

Nitrogen (A)

Management (B)

Varieties (C)

Block (K)

Total

Treatment

1

2

3

a1

b1

c1

3.320

3.864

4.507

11.691

   

c2

6.101

5.122

4.815

16.038

   

c3

5.355

5.536

5.244

16.135

   

Total a1b1kl

14.776

14.522

14.566

43.864

 

b2

c1

3.766

4.311

4.875

12.952

   

c2

5.096

4.873

4.166

14.135

   

c3

7.442

6.462

5.584

19.488

   

Total a1b2kl

16.304

15.646

14.625

46.575

 

b3

c1

4.660

5.915

5.400

15.975

   

c2

6.573

5.495

4.225

16.293

   

c3

7.018

8.020

7.642

22.680

   

Total a1b3kl

18.251

19.430

17.267

54.948

Total a1kl

   

49.331

49.598

46.458

145.387

a2

1

c1

3.188

4.752

4.756

12.696

   

c2

5.595

6.780

5.390

17.765

   

c3

6.706

6.546

7.092

20.344

   

Total a2b1kl

15.489

18.078

17.238

50.805

 

2

c1

3.625

4.809

5.295

13.729

   

c2

6.357

5.925

5.163

17.445

   

c3

8.592

7.646

7.212

23.450

   

Total a2b2kl

18.574

18.380

17.670

54.624

 

3

c1

5.232

5.170

6.046

16.448

   

c2

7.016

7.442

4.478

18.936

   

c3

8.480

9.942

8.714

27.136

   

Total a2b3kl

20.728

22.554

19.238

62.520

Total a2kl

   

54.791

59.012

54.146

167.949

a3

1

c1

5.468

5.788

4.422

15.678

   

c2

5.442

5.988

6.509

17.939

   

c3

8.452

6.698

8.650

23.800

   

Total a3b1kl

19.362

18.474

19.581

57.417

 

2

c1

5.759

6.130

5.308

17.197

   

c2

6.398

6.533

6.569

19.500

   

c3

8.662

8.526

8.514

25.702

   

Total a3b2kl

20.819

21.189

20.391

62.399

 

3

c1

6.215

7.106

6.318

19.639

   

c2

6.953

6.914

7.991

21.858

   

c3

9.112

9.140

9.320

27.572

   

Total a3b3kl

22.280

23.160

23.629

69.069

Total n3kl

   

62.461

62.823

63.601

188.885

Total

Block

   

166.583

171.433

164.205

502.221

 

Calculation by Hand:

Step 1: Calculate the Correction Factor

$$ CF=\frac{Y....^2}{rabc}=\frac{(502.221)^2}{3\times3\times3\times3}=3113.90$$ 

Step 2: Calculate the Sum of The Total Squares

$$\begin{matrix}SSTOT=\sum_{i,j,k,l}{Y_{ijkl}}^2-CF\\=(3.320)^2+(3.864)^2+...+(9.320)^2-3113.90\\=189.71\\\end{matrix}$$ 

Analysis of the Main Plot:

Main Total Plot Data (Block x Nitrogen)

Nitrogen (A)

Block (K)

Total A

1

2

3

1

49.331

49.598

46.458

145.387

2

54.791

59.012

54.146

167.949

3

62.461

62.823

63.601

188.885

Total K

166.583

171.433

164.205

502.221

 

Step 3: Calculate the Sum of The Main Plot Squares

$$\begin{matrix}SS(MP)=\sum_{i,l}\frac{{Y_{i..l}}^2}{bc}-CF=\frac{\sum_{i,l}{(a_ir_l)^2}}{bc}-CF\\=\frac{(49.331)^2+(49.598)^2+...+(63.601)^2}{3\times3}-3113.900\\=37.36\\\end{matrix}$$

Step 4: Calculate the Sum of Squares of Blocks

$$\begin{matrix}SSR=\sum_{l}\frac{{Y_{...l}}^2}{abc}-CF=\frac{\sum_{l}{(r_l)^2}}{abc}-CF\\=\frac{(166.583)^2+(171.433)^2+(164.205)^2}{3\times3\times3}-3113.90\\=1.005\\\end{matrix}$$

Step 5: Calculate the Sum of Squares of Factor A

$$\begin{matrix}SS(A)=\sum_{i}\frac{{Y_{i..}}^2}{rbc}-CF=\frac{\sum_{i}{(a_i)^2}}{rbc}-CF\\=\frac{(145.387)^2+(167.949)^2+(188.885)^2}{3\times3\times3}-3113.90\\=35.055\\\end{matrix}$$

Step 6: Calculate the Sum of Squares of Main Plot Errors (Ea)

$$\begin{matrix}SS(Ea)=\sum_{i,l}\frac{{Y_{i..l}}^2}{bc}-CF-SSB-SS(A)\\=\frac{\sum_{i,l}{(a_ir_l)^2}}{bc}-CF-SSB-SS(A)\\=SS(MP)\ -\ SSR\ -\ SS(A)\ \\=37.36-1.005-35.055\\=1.296\\\end{matrix}$$

Analysis of the Sub plot:

Total Sub plot Data: Block x Nitrogen x Management (RAB)

Nitrogen (A)

Management (B)

Block (R)

Total AB

1

2

3

1

1

14.776

14.522

14.566

43.864

 

2

16.304

15.646

14.625

46.575

 

3

18.251

19.430

17.267

54.948

2

1

15.489

18.078

17.238

50.805

 

2

18.574

18.380

17.670

54.624

 

3

20.728

22.554

19.238

62.520

3

1

19.362

18.474

19.581

57.417

 

2

20.819

21.189

20.391

62.399

 

3

22.280

23.160

23.629

69.069

Total K

 

166.583

171.433

164.205

502.221

 

Total Nitrogen Factor x Management (AB) Data

Nitrogen (A)

Management (B)

Total A

1

2

3

1

43.864

46.575

54.948

145.387

2

50.805

54.624

62.520

167.949

3

57.417

62.399

69.069

188.885

Total B

152.086

163.598

186.537

502.221

 

Step 7: Calculate the Sum of Squares of Sub plots

$$\begin{matrix}SS(SP)=\sum_{i,j,l}\frac{{Y_{ij.l}}^2}{c}-CF\\=\frac{\sum_{i,j,l}{(a_ib_jr_l)^2}}{c}-CF\\=\frac{(14.776)^2+(14.522)^2+...+(23.629)^2}{3}-3113.900\\=63.07\\\end{matrix}$$

Step 8: Calculate the Sum of Squares of Factor B

$$\begin{matrix}SS(B)=\sum_{j}\frac{{Y_{.j..}}^2}{rac}-CF=\frac{\sum_{j}{(b_j)^2}}{rac}-CF\\=\frac{(152.086)^2+(163.598)^2+(186.537)^2}{3\times3\times3}-3113.90\\=22.785\\\end{matrix}$$

Step 9: Calculate the Sum of Squares of AB Interactions

$$\begin{matrix}SS(AB)=\sum_{i,j}\frac{{Y_{ij.}}^2}{rc}-CF-SS(A)-SS(B)\\=\frac{\sum_{i,j}{(a_ib_j)^2}}{rc}-CF-SS(A)-SS(B)\\=\frac{(43.864)^2+(46.575)^2+...+(69.069)^2}{3\times3}-3113.90-35.055-22.785\\=0.162\\\end{matrix}$$

Step 10: Calculate the Sum of Squared Sub plot Errors (Eb)

$$\begin{matrix}SS(Eb)=SS(SP)\ -\ SSR\ -\ SS(A)\ -\ SS(Ea)\ -\ SS(B)\ -\ SS(AB)\ \ \\=63.07-1.005-35.055-1.296-22.785-0.162\\=2.771\\\end{matrix}$$

 

Analysis of the Sub-sub plot:

Table of Nitrogen x Varieties (AC)

Nitrogen (A)

Varieties (C)

Total A

1

2

3

1

40.618

46.466

58.303

145.387

2

42.873

54.146

70.930

167.949

3

52.514

59.297

77.074

188.885

Total C

136.005

159.909

206.307

502.221

 

Management Table x Varieties (BC)

Management (B)

Varieties (C)

Total B

1

2

3

1

40.065

51.742

60.279

152.086

2

43.878

51.080

68.640

163.598

3

52.062

57.087

77.388

186.537

Total C

136.005

159.909

206.307

502.221

 

Nitrogen x Management x Variety (ABC) Table

Nitrogen (A)

Management (B)

Varieties (C)

1

2

3

1

1

11.691

16.038

16.135

 

2

12.952

14.135

19.488

 

3

15.975

16.293

22.680

2

1

12.696

17.765

20.344

 

2

13.729

17.445

23.450

 

3

16.448

18.936

27.136

3

1

15.678

17.939

23.800

 

2

17.197

19.500

25.702

 

3

19.639

21.858

27.572

 

Step 11: Calculate the Sum of Squares of Factor C

$$\begin{matrix}SS(C)=\sum_{k}\frac{{Y_{..k.}}^2}{rab}-CF\\=\frac{\sum_{k}{(c_k)^2}}{rab}-CF\\=\frac{(136.005)^2+(159.909)^2+(206.307)^2}{3\times3\times3}-3113.90\\=94.649\\\end{matrix}$$

Step 12: Calculate the Sum of Squares of AC Interactions

$$\begin{matrix}SS(AC)=\sum_{i,k}\frac{{Y_{i.k.}}^2}{rb}-CF-SS(A)-SS(C)\\=\frac{\sum_{i,k}{(a_ic_k)^2}}{rb}-CF-SS(A)-SS(C)\\=\frac{(40.618)^2+(42.873)^2+...+(77.074)^2}{3\times3}-3113.90-35.055-94.649\\=3.436\\\end{matrix}$$

Step 13: Calculate the Sum of Squares of BC Interactions

$$\begin{matrix}SS(BC)=\sum_{j,k}\frac{{Y_{.jk.}}^2}{ra}-CF-SS(B)-SS(C)\\=\frac{\sum_{j,k}{(b_jc_k)^2}}{ra}-CF-SS(B)-SS(C)\\=\frac{(40.065)^2+(43.878)^2+...+(77.388)^2}{3\times3}-3113.90-22.785-94.649\\=4.240\\\end{matrix}$$

Step 14: Calculate the Sum of Squares of ABC Interactions

$$\begin{matrix}SS(ABC)=\sum_{i,j,k}\frac{{Y_{ijk.}}^2}{r}-CF-SS(A)-SS(B)-SS(C)-\\SS(AB)-SS(AC)-SS(BC)\\=\frac{\sum_{i,j,k}{(a_ib_jc_k)^2}}{r}-CF-SS(A)-SS(B)-SS(C)-\\SS(AB)-SS(AC)-SS(BC)\\=\frac{(11.691)^2+(16.038)^2+...+(27.572)^2}{3}-3113.90-35.055-22.785-94.649-\\0.162-3.436-4.240\\=2.363\\\end{matrix}$$

Step 15: Calculate the Sum of Squares of Sub-sub plot Errors (Ec)

$$\begin{matrix}SS\left(Ec\right)=SSTOT-other\ SS\\=SSTOT-SSR-SS\left(A\right)-SS\left(Ea\right)-\\SS\left(B\right)-SS\left(AB\right)-SS\left(Eb\right)-\\SS\left(C\right)-SS\left(AC\right)-SS\left(BC\right)-SS\left(ABC\right)\\=189.709-1.005-35.055-1.296-\\22.785-0.162-2.771-\\94.649-3.436-4.240-2.363\\=21.947\\\end{matrix}$$

Step 16: Create an Analysis of variance Table with its F-Values table

Table 10.  Anova Table of Rice Yield

Source

Variety

DB

SS

MS

F-stat

F .05

F .01

 Main Plot

           

Block (K)

2

1.00520207

0.50260104

1.55 ns

6.944

18

Nitrogen (A)

2

35.0547647

17.5273824

54.10 **

6.944

18

Error(a)

4

1.29597452

0.32399363

-

 

 

Sub plots

           

Management (B)

2

22.7851267

11.3925634

49.33 **

3.885

6.927

AB

4

0.16164496

0.04041124

0.17 ns

3.259

5.412

Error(b)

12

2.77122052

0.23093504

-

 

 

Sub-sub plots

           

Varieties (C)

2

94.6487262

47.3243631

77.63 **

3.259

5.248

AIR CONDITIONING

4

3.43556081

0.8588902

1.41 ns

2.634

3.89

BC

4

4.24034948

1.06008737

1.74 ns

2.634

3.89

ABC

8

2.36296259

0.29537032

0.48 ns

2.209

3.052

Error(c)

36

21.9473389

0.6096483

-

 

 

Total

80

189.708872

 

 

 

 

 

Calculate the coefficient of Variance:

$$\begin{matrix}CV(a)=\frac{\sqrt{MS(Ea)}}{\bar{Y}...}\times100\%=\frac{\sqrt{0.324}}{6.200}\times100\%\\=9.18\%\\\end{matrix}$$

$$\begin{matrix}CV(b)=\frac{\sqrt{MS(Eb)}}{\bar{Y}...}\times100\%=\frac{\sqrt{0.231}}{6.200}\times100\%\\=7.75\%\\\end{matrix}$$

$$\begin{matrix}CV(c)=\frac{\sqrt{MS(Ec)}}{\bar{Y}...}\times100\%=\frac{\sqrt{0.6096}}{6.200}\times100\%\\=12.59\%\\\end{matrix}$$

so: CV (a) = 9.18 %;  CV (b) = 7.75 %;  CV (c) = 12.59 %. 

The coefficient of Variance of the main plot > the sub-plot > the sub-sub plot.  But in the above case, it does not indicate the condition. If this happens frequently, you should discuss it with someone who is an expert in the field of statistics.

Step 17: Make a Conclusion

From the Analysis of variance Table, it does not appear that the effect of interaction is insignificant, both the interaction between the three factors (ABC interaction) and the interaction between two factors (AB, AC, BC), so that the examination of the effect of treatment is continued with its main effect.  The main (independent) effect of the three factors is significant, so it is necessary to carry out further investigation to determine the differences between the average levels of treatment.

Post Hoc

Based on the analysis of variance, the effect of interaction is not significant, while the three main effect are significant.  Further testing was conducted on the main-effect of these three factors.

Here are the post hoc test steps by using LSD:

Test criteria:

Compare the absolute value of the difference between the two averages that we will see the difference with the LSD value with the following test criteria:

 $$ if\ \ \left|\mu_i-\mu_j\right|\ \ \left\langle\ \ \begin{matrix}>LSD_{0.05}\ \mathbf{reject}\ H_0,\ two\ means\ are\ significantly\ different\\\le LSD_{0.05}\ \mathbf{accept}\ H_0,\ two\ means\ are\ not\ significantly\ different.\\\end{matrix}\right.$$

Comparison of Average Nitrogen Factors (A):

To compare the two main plot means (Nitrogen Factor), it is necessary to first determine the Standard Error (sy) using the formula:

 $$s_{\bar{y}}=\sqrt{\frac{2MS(Ea)}{rbc}}$$

Specify the t-student value at the significant level of α =5% with error-degree of freedoms a = 4:

t(0.05/2; 4) = 2.776

Calculate the LSD value:

$$\begin{matrix}LSD=t_{0.05/2;4}\cdot s_{\bar{Y}}\\=t_{0.05/2;4}\cdot\sqrt{\frac{2MS(Ea)}{rbc}}\\=2.776\times\sqrt{\frac{2(0.32399)}{3\times3\times3}}=2.776\times0.15492\\=0.430\ \ kg\\\end{matrix}$$

Compare the difference in the average treatment with the LSD value = 0.430 kg. State it differently if the average difference is greater than the LSD value.  The result is as follows: 

Comparison:

SED (SY)

LSD 5%

2-N mean

0.15492

0.4301

 

Nitrogen (N)

Average

1

5.3847 a

2

6.2203 b

3

6.9957 c

 

Comparison of Average Management Factors (B):

To compare two sub plot means (Management Factors), it is necessary to first determine the Standard Error (sy) using the formula:

$$s_{\bar{y}}=\sqrt{\frac{2MS(Eb)}{rac}}$$

Specify the value of t-student at significant level α =5% with error-degree of freedoms b = 12:

t(0.05/2;  12) = 2,179

Calculate the LSD value:

$$\begin{matrix}LSD=t_{0.05/2;12}\cdot s_{\bar{Y}}\\=t_{0.05/2;12}\cdot\sqrt{\frac{2MS(Eb)}{rac}}\\=2.179\times\sqrt{\frac{2(0.23094)}{3\times3\times3}}=2.179\times0.13079\\=0.285\ \ kg\\\end{matrix}$$

Compare the difference in the average treatment with the LSD value = 0.285 kg. State it differently if the average difference is greater than the LSD value. The result is as follows:

 

Comparison:

SED (SY)

LSD 5%

2-M mean

0.13079

0.2850

 

Management (M)

Average

1

5.6328 a

2

6.0592 b

3

6.9088 c

 

Comparison of Average Varietal Factors (C):

To compare two sub-sub plot means (Variety Factor), it is necessary to first determine the Standard Error (sy) using the formula:

$$s_{\bar{y}}=\sqrt{\frac{2MS(Ec)}{rab}}$$

Specify the t-student value at a significant level of α =5% with error-degree of freedoms c = 36:

t(0.05/2;  36) = 2,0281

Calculate the LSD value:

$$\begin{matrix}LSD=t_{0.05/2;36}\cdot s_{\bar{Y}}\\=t_{0.05/2;36}\cdot\sqrt{\frac{2MS(Ec)}{rab}}\\=2.0281\times\sqrt{\frac{2(0.60965)}{3\times3\times3}}=2.0281\times0.2125\\=0.4310\ \ kg\\\end{matrix}$$

Compare the difference in the average treatment with the value of LSD = 0. 4310 kg. State it differently if the average difference is greater than the LSD value.  The result is as follows: 

Comparison:

SED (SY)

LSD 5%

2-average V

0.2125

0.4310

 

Varieties (V)

Average

1

5.0372 a

2

5.9226 b

3

7.6410 c

 

Calculation by SmartstatXL Excel Add-In

Graphical user interface Description automatically generated

 

Anova:

Graphical user interface, application, table Description automatically generated

 

Post Hoc:

Graphical user interface Description automatically generated with low confidence

 

Graphical user interface Description automatically generated

 

Interaction (Not Significant difference)

Table Description automatically generated

Chart, bar chart Description automatically generated

 

Anova Assumption:

Table Description automatically generated

Chart, scatter chart Description automatically generated